Using Optimization Software for Solving Linear Systems with integer coefficients Abbas Abdelaziz Gumaa Mahmoud Abdlmoneim fadil

Department of Mathematics, Alzaiem Alazhari University, Sudan.

ABSTRACT

This study examines the use of optimization application software to solve linear systems because there are some complex linear systems that do not have a single solution, but an optimal solution among a set of solutions. The study was based on a linear system as a case study, which was solved using Excel and SimSolve as software designed using the traditional methods to solve the linear system under investigation. The same system was also solved again using the optimization software; Excel Solver and Lindo 6.1, where there was no difference in the correct solution in both ways. Then, the linear system, which used as a case study, was modified to become more complex, as the number of equations became greater than the number of variables. When the new system was resolved using the mentioned software, the results were in favor of the optimization software Solver and Lindo 6.1; they succeeded in providing solutions with a margin of error, while, Excel and SimSolve software, designed with traditional algorithms, failed to achieve a result. Based on these results, the study recommends introducing optimization software within the mathematics curriculum in the advanced stages of the educational system and training both the teachers as well as their students to use such software in order to reduce the time and effort required for solving traditional systems, and to obtain best results when solving these systems. It is recommended making use of information and communication technologies that made learning mathematics more easily and increase reliability on mathematical models in solving life problems

Keywords: linear systems, optimization software, information technology, and life problems.

Introduction

In this paper we will try to take advantage of the great development in the field of software to employ them in the direction of building mathematical models and resolution.

The aims look for optimization programs to solve systems of linear equations and so these methods requiring less mathematical skills and effort mentally contributes to less than reliable in various applications for non-specialists in mathematics. And then compare this software to find the difference between them and the errors if it is existing. The study helps to shorten the time in the solution of linear systems using some ready-made software with less effort and small errors. Also, through the study note that can non-professionals in the field of mathematics to deal with linear systems.

1. Case Study:

In this case the coefficients of the variables are integer numbers and the number of the equations = number of variables. There are 10 equations of 10 variables x1, x2, x3, ..., x10

3X1+X2+2X3+4X4+2X5+8X6+4X7-X8-X10 = 7

-X1+3X2+X3-2X4-X5+4X6+5X7-2X8-3X9+7X10 = -28

5X1-X2+3X4+9X5-2X6-X7-4X8+5X9+X10 = 49

2X1+2X2-X3+4X4+8X5-12X6+3X7+2X8-X9-9X10 = 1

X1+11X2-5X3-2X4-X5+8X7+X8-2X9+4X10 = -36

12X1+5X2+2X3+7X5+20X6-9X7-9X8+6X9 =32

8X1-2X2+6X3-5X4+6X5+10X6-13X7-4X9+10X10 = 18

17X2+2X3-X4+3X5+6X6+5X7+2X8-6X9+4X10 = -9

7X1-10X4+2X5-3X7+X8+X9+X10 = -2

13X1+8X2+2X3-7X4+X5-6X6+2X7+3X8+2X9+X10 = 21

2. Solution of case study 1 using Excel Solver:

Enter the data (linear system), see Figure (1)

C			
	C1	- (f _×
	Α	В	С
1	0	7	<u> </u>
2	0	-28	_
3	0	49	
4	0	1	
5	0	-36	
6	0	32	
7	0	18	
8	0	-9	
9	0	-2	
10	0	21	

Figure (1): Case Excel input

The solution report is shown in Figure (2)

	A B	С	D	E							
1	Microsoft	t Excel	12.0 Answer Re	port							
2	2 Worksheet: [case study 1.xlsx]Sheet2										
3	ص Report Created: 08/22/2016 07:14:11										
4											
5											
6	Target Cell (Max)										
7	NONE										
8											
9											
10	Adjustable Cells										
11	Cell	Name	Original Value	Final Value							
12	\$C\$1		0	-2.00000							
13	\$C\$2		0	1.00000							
14	\$C\$3		0	5.00000							
15	\$C\$4		0	1.50000							
16	\$C\$5		0	3.00000							
17	\$C\$6		0	0.25000							
18	\$C\$7		0	-1.00000							
19	\$C\$8		0	6.00000							
20	\$C\$9		0	10.00000							
21	\$C\$10		0	2.00000							
22					-						
22											

Figure (2): Excel Answers

The following table Table (1) shows the answers by Excel Solver

Table (1): Excel Case 1 Answers										
Variable	X 1	X2	X3	X 4	X5	X6	X 7	X 8	X 9	X10

	r	1								
Value	-2	1	5	1.5	3	0.25	-1	6	10	2

Table (2) shows the substitutions of the above values of the variables in the first case study to find the errors of the solutions if it exists. The error represents the deference between constant and the final value produced from substitution

Table (2): verification of Excel solution								
Equation	Constant	Substitution Value	The error					
Equation	7	7	0					
1								
Equation	-28	-28	0					
2								
Equation	49	49	0					
3								
Equation	1	1	0					
4								
Equation	-36	-36	0					
5								
Equation	32	32	0					
6								
Equation	18	18	0					
7								
Equation	=9	=9	0					
8								
Equation	-2	-2	0					
9								
Equation	21	21	0					
10								

3. Solution of Case Study 1 using LINDO:

Input the system in Lindo like in Figure (3)

Kara LINDO - [D:\personal\my res\conc\Research\case study 1.ltx]
🚟 File Edit Solve Reports Window Help
Max
x1
St
3X1+X2+2X3+4X4+2X5+8X6+4X7-X8-X10 = 7
-X1+3X2+X3-2X4-X5+4X6+5X7-2X8-3X9+7X10 = -28
5X1-X2+3X4+9X5-2X6-X7-4X8+5X9+X10 = 49
2X1+2X2-X3+4X4+8X5-12X6+3X7+2X8-X9-9X10 = 1
X1+11X2-5X3-2X4-X5+8X7+X8-2X9+4X10 = -36
12X1+5X2+2X3+7X5+20X6-9X7-9X8+6X9 =32
8X1-2X2+6X3-5X4+6X5+10X6-13X7-4X9+10X10 = 18
17X2+2X3-X4+3X5+6X6+5X7+2X8-6X9+4X10 = -9
7X1-10X4+2X5-3X7+X8+X9+X10 = -2
13X1+8X2+2X3-7X4+X5-6X6+2X7+3X8+2X9+X10 = 21
end
Freex1
Freex2
Freex3
Freex4
Freex5
Freex6
Freex7
Freex8
Freex9
Freex10

Figure (3): Lindo input

Then the solution seen in Figure (4).

P OPTIMUM	FOUND AT STEP	10
OBJE	CTIVE FUNCTION VA	LUE
1)	-2.000000	
VARIABLE	VALUE	REDUCED COST
X1	-2.000000	0.00000
X2	1.000000	0.00000
X3	5.000000	0.00000
X4	1.500000	0.00000
X5	3.000000	0.00000
X6	0.250000	0.00000
X7	-1.000000	0.00000
X8	6.000000	0.00000
X10	2.000000	0.00000
Х9	10.000000	0.00000

Figure (4): Case 1 Lindo Answer

The following Table (3) shows the answers by LINDO.

Table (3): Lindo Case 1 Answers

Table (3): Lindo Case 1 Answers										
Variable	X1	X2	X3	X 4	X5	X6	X 7	X 8	X9	X10

Value -2 1 5 1.5 3 0.25 -1 6 10 2

Table (4) shows the substitutions of the above values of the variables in the first case study to find the errors of the solutions if it exists. The error represents the deference between constant and the final value produced from substitution.

Table (4): Lindo Case 1 verification									
Equation	Constant	Substitution Value	The error						
Equation	7	7	0						
1									
Equation	-28	-28	0						
2									
Equation	49	49	0						
3									
Equation	1	1	0						
4									
Equation	-36	-36	0						
5									
Equation	32	32	0						
6									
Equation	18	18	0						
7									
Equation	=9	=9	0						
8									
Equation	-2	-2	0						
9									
Equation	21	21	0						
10									

4. Solution of Case Study using Maxima:

Enter the system in Maxima as in Figure (5)

Solve linear sy	rstem	×
Equation 1:	<4+2*X5+8*X6+4*X7	-X8-X10 = 7
Equation 2:	+5*X7-2*X8-3*X9+7	*X10 = -28
Equation 3:	5-2*X6-X7-4*X8+5*	X9+X10 = 49
Equation 4:	2*X6+3*X7+2*X8-X9	$-9 \times X10 = 1$
Equation 5:	<5+8*X7+X8-2*X9+4	*X10 = -36
Equation 6:	*X5+20*X6-9*X7-9*	X8+6*X9 =32
Equation 7:)*X6-13*X7-4*X9+1	0*X10 = 18
Equation 8:	<6+5*X7+2*X8-6*X9	$+4 \times X10 = -9$
Equation 9:	*X4+2*X5-3*X7+X8+	$x_{9}+x_{10} = -2$
Equation 10:	*X6+2*X7+3*X8+2*X	9+X10 = 21
Variables:	×1, x2, x3, x4, x5, x6	,x7,x8,x9,x
	ОК	Cancel

Figure (5): Case 1 Maxima input

Then the solution is in figure (6)

(%i2) %, numer;
(%o2) [X1=-2, X2=1, X3=5, X4=1.5, X5=3, X6=0.25, X7=-1, X8=6, X9=10, X10=2]

Figure (6): Case 1 Maxima Answer

The following Table (5) shows the answers by Maxima:

Table (5): Maxima Case 1 Answers										
Variable	X1	X2	X3	X4	X5	X6	X 7	X8	X9	X10
Value	-2	1	5	1.5	3	0.25	-1	6	10	2

Table (6) shows the substitutions of the above values of the variables in the first case study to find the errors of the solutions if it exists. The error represents the deference between constant and the final value produced from substitution.

Table (6): Maxima Case 1 verification								
Equation	Constant	Substitution Value	The error					
Equation 1	7	7	0					
Equation 2	-28	-28	0					
Equation 3	49	49	0					
Equation 4	1	1	0					
Equation 5	-36	-36	0					
Equation 6	32	32	0					
Equation 7	18	18	0					
Equation 8	=9	=9	0					
Equation 9	-2	-2	0					
Equation 10	21	21	0					

5. Solution of Case Study by using SimSolve:

Enter the matrix coefficients and the constants in SimSolve, see Figure (7)

	iving Log	gic or People	This utility v equations in	vill solve a se n N variables	t of simultaneo	US				
			For more fr	ee utilities, vis	sit www.livinglo	ogic.com.au				
lumbe	er of variables	10								
A	В	С	D	E	F	G	н	I.	J	RHS
3	1	2	4	2	8	4	-1	0	-1	7
1	3	1	-2	-1	4	5	-2	=3	7	-28
5	-1	0	3	9	-2	-1	-4	5	1	49
2	2	-1	4	8	-12	3	2	-1	-9	1
1	11	-5	-2	-1	0	8	1	-2	4	-36
12	5	2	0	7	20	-9	-9	6	0	32
8	-2	6	-5	6	10	-13	0	-4	10	18
0	17	2	-1	3	6	5	2	-6	4	-9
7	0	0	-10	2	0	-3	1	1	1	-2
13	8	2	-7	1	-6	2	3	2	1	21

Figure (7): SimSolve input

Then the solution as in Figure (8)

.

SimSolve Results	_	×
CONCLUSION:		^
$\begin{array}{l} A &= -2 \\ B &= 1 \\ C &= 5 \\ D &= 1.5 \\ E &= 3 \\ F &= 0.25 \\ G &= -1 \\ H &= 6 \\ I &= 10 \\ J &= 2 \end{array}$		
Single solution exists.		

Figure (8): SimSolve Output

The following Table (7) shows the answers by SimSolve:

Table (7): SimSolve Case 1 Answers										
Variable	X1	X2	X3	X4	X5	X6	X 7	X8	X9	X10
Value	-2	1	5	1.5	3	0.25	-1	6	10	2

Table (8) shows the substitutions of the above values of the variables in the first case study to find the errors of the solutions if it exists. The error represents the deference between constant and the final value produced from substitution.

Table (8): SimSolve Case 1 verification							
Equation	Constant	Substitution Value	The error				
Equation 1	7	7	0				
Equation 2	-28	-28	0				
Equation 3	49	49	0				
Equation 4	1	1	0				
Equation 5	-36	-36	0				
Equation 6	32	32	0				
Equation 7	18	18	0				
Equation 8	=9	=9	0				
Equation 9	-2	-2	0				
Equation 10	21	21	0				

6. Conclusion

In the case study which is represents a sample of:

- High order system (10 equations).
- Number of equations = number of variables.
- The coeficients are integers.
- The system has a simultaneous soluntion.

Did not record any differences in the solutions and the results match, and no mistakes in all software solutions after verification.

As for the time and effort solves this system no later than the time and effort admission process.

References

[1]A. Barry (2003). Computational methods in O.R using Lindo and Lingo (2003). Available at: http://www.abarry.ws/books/CalculationMethodsBook.pdf/

[2]Bosch, W. W., and Strickland, J. (1998). Systems of linear equations on a spreadsheet. Mathematics & Computer Education, 32, (1), 11-16.

[3]Camporesi, Roberto (2016). A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization. International Journal of Mathematical Education in Science and Technology, v47 n1 p82-99 2016.

[4]Carley, Holly (2014). On Solving Systems of Equations by Successive Reduction Using 2×2 Matrices. Australian Senior Mathematics Journal, v28 n1 p43-56 2014.

[5]Deane Arganbright (n. d). Innovative Uses of Excel in Linear Algebra. Department of Mathematics and Computing Science Divine Word University, Papua New Guinea. Available online at: http://atcm. mathandtech. org/EP2011 /regular_papers / 3272011_19192.pdf

[6]Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M. and Wilhelm, Thad L. (2015). Investigating Integer Restrictions in Linear Programming. Mathematics Teacher, v109 n2 p136-142 Sep 2015.

[7]El-Gebeily, M. and Yushau, B. (2008). Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel. International Journal of Mathematical Education in Science and Technology, 39(1), 83-94.

[8]Greg Harvey (2007). Microsoft Office Excel 2007: All-in-one desk reference .Wiley Publishing, Inc.

[9]Jerome, Lawrence (2012). Generalized assignment matrix methodology in linear programming. International Journal for Technology in Mathematics Education, v19 n1 p25-41 2012.

[10]LINDO User's Manual (2003). LINDO SYSTEMS INC. Available online at: http://www.lindo.com.

[11]Macsyma system (2001). Maxima User Manual.

[12]Martin Golubitsky and Michal Dellnitz (1999). Linear algebra & differential equations using MATLAB. An International Thomson Publisher Company.

[13]Mike Brookers (2011). The Matrix Reference Manual. Imperial College – London.

[14]N. I. Danilina, N. S. Dubrovskaya, O. P. Kvasha and G. L. Samirov (1988). Computational Mathematics. Mir Publisher.

[15]O. V. Manturov and N. M. Matveev (1989). A Course of Higher Mathematics. Mir Publisher.

[16]R. L. Burden and J. D. Faires (2011). Numerical Analysis (9th ed.). Youngstown State University.

[17]Roanes-Lozano, Eugenio (2011). Some applications of algebraic system solving. International Journal for Technology in Mathematics Education; 2011, Vol. 18 Issue 3, p149.

[18]Stephen Moffat (2011). Excel 2010 Part II. Stephen Moffat & bookboon.com Available online at: http //www.bookboon.com.

[19]Yang, Der-Ching and Lin, Yung-Chi (2015). Examining the differences of linear systems between Finnish and Taiwanese textbooks. EURASIA Journal of Mathematics, Science & Technology Education, v11 n6 p1265-1281 Dec 2015.